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Phase diagram of vortex matter in layered superconductors with tilted columnar pinning centers
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We study the vortex matter phase diagram of a layered superconductor in the presence of columnar pinning
defects, tilted with respect to the normal to the layers. We use numerical minimization of the free energy
written as a functional of the time-averaged vortex density of the Ramakrishnan-Yussouff form, supplemented
by the appropriate pinning potential. We study the case where the pin density is smaller than the areal vortex
density. At lower pin concentrations, we find, for temperatures of the order of the melting temperature of the
unpinned lattice, a Bose glass type phase which at lower temperatures converts, via a first-order transition, to
a Bragg glass, while, at higher temperatures, it crosses over to an interstitial liquid. At somewhat higher
concentrations, no transition to a Bragg glass is found even at the lowest temperatures studied. While quali-
tatively the behavior we find is similar to that obtained using the same procedures for columnar pins normal to
the layers, there are important and observable quantitative differences, which we discuss.
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I. INTRODUCTION

Equilibrium and dynamic properties of vortex matter in
highly anisotropic, layered, high-temperature superconduct-
ors are known' to be strongly affected by the presence of
pinning. Effects of random columnar pinning produced by
heavy-ion bombardment have been studied theoretically,?>
experimentally,* and numerically>® for the situation in
which both the columnar pins and the magnetic field are
perpendicular to the layers. In this geometry, if the areal
concentration of columnar pins exceeds that of vortex lines
(i.e., for B4>B, where B, is the matching field and B is the
magnetic induction), the vortex system exhibits a continuous
Bose glass (BoG) to vortex liquid (VL) transition® as the
temperature is increased. If, on the other hand, the relative
pin concentration ¢=By/B is substantially smaller than
unity, then the vortex system exhibits a first-order
transition®* between a high-temperature VL and a low-
temperature BoG phase that has a polycrystalline
structure®” with grain boundaries separating crystalline do-
mains of different orientations. The VL into which the BoG
melts has the characteristics of an “interstitial liquid” in
which some of the vortices remain localized at the columnar
pins, producing solidlike regions around them, whereas the
remaining, interstitial vortices form liquidlike regions. The
pinned vortices delocalize at a “depinning crossover” that
occurs at a higher temperature. Numerical studies®~® also in-
dicate the occurrence of a topologically ordered phase,
analogous to the Bragg glass (BrG) phase'®!! in systems
with random point pinning, at low temperatures if the rela-
tive concentration of columnar pins is sufficiently small.

The question of how the behavior described above is
modified in the case of tilted columnar pinning, where the
magnetic field is tilted away from the direction of the colum-
nar pins, has also received considerable attention in the past.
Theoretical studies®!> have considered the geometry in
which the columnar pins are perpendicular to the layers and
the applied magnetic field makes an angle 6 with the normal
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to the layers. These studies predict that for B<<B, the ef-
fects of the correlated nature of the columnar pins become
less pronounced as the angle € is increased. Specifically, the
vortex lines are predicted to remain locked to the columnar
pins if 6 is sufficiently small, producing a “transverse Meiss-
ner effect.” For larger values of the angle 6, the vortices hop
from one columnar pin to the next one, forming a staircase
structure. As 6 is increased further, the directional effect of
columnar pinning is lost and the vortex lines follow the field
direction. The low-temperature BoG phase persists for small
values of 6, but disappears as 6 is increased beyond a critical
value. Some of these theoretical predictions have been veri-
fied in experiments.'?

The behavior of vortex systems with tilted columnar pin-
ning and B>B, (c<1) has been investigated recently in
experiments'# and simulations.!*!> The experiments were
performed on a sample of Bi,Sr,CaCu,0g (BSCCO) with a
small concentration of random columnar pins tilted at an
angle of 45° from the normal (z direction) to the copper
oxide layers. The magnitude and direction of the applied
magnetic field H were varied and the location of the BoG to
interstitial VL transition in the H, versus temperature (7)
plane was determined for several values of the tilting angle 6
between the directions of the magnetic induction B and the
columnar pins. The values of H considered in the experiment
were such that the number density of pancake vortices on the
layers (determined by B,) is higher than that of the columnar
pins. The main result of this experiment is that the tempera-
ture at which the BoG to VL transition occurs for a fixed
value of H, is independent of the tilt angle 6. The tempera-
ture at which the inhomogeneous VL (called “vortex nano-
liquid” in Ref. 14) crosses over to the depinned, homoge-
neous liquid was also found to be independent of 6 for a
fixed value of H,. The simulations were performed for a
fixed number density of pancake vortices on the layers (fixed
B.) and different orientations of the columnar pins, keeping
the number density of pinning centers on each layer fixed at
a value lower than that of pancake vortices. Both Josephson
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and electromagnetic interactions between pancake vortices
on different layers were included in the simulations. The re-
sults of the simulations were found to be consistent with the
experimental observation that the locations of the thermody-
namic transitions are independent of the angle between the
columnar pins and the applied field if the number densities of
pancake vortices and pinning centers on each layer (i.e., the
values of B, and B cos ¢ where i is the angle between the
layer normal and the direction of the columnar pins) are held
fixed.

These results are surprising because tilting the columnar
pins away from the direction of the layer normal introduces
“frustration” in the system in the following sense. If the pin-
ning potential of each pinning center is sufficiently strong
and the temperature sufficiently low (these conditions are
satisfied in the experiment and simulation described above),
then nearly all the pinning centers on each layer would be
occupied by pancake vortices. For columnar pins perpen-
dicular to the layers, the pinned vortices on different layers
would then be aligned directly on top of one another. This
alignment of the pancake vortices in the direction of the
layer normal minimizes both the Josephson and electromag-
netic interactions between vortices on different layers. How-
ever, if the columnar pins are tilted away from the layer
normal, then the pinned pancake vortices on different layers
would not be aligned directly on top of one another, thereby
increasing the energy associated with the interlayer interac-
tions of these vortices. For B,> B cos  (the case consid-
ered in Refs. 14 and 15), interstitial pancake vortices that are
not localized at pinning centers can relieve this frustration to
some extent by forming a staircaselike structure in which
they remain aligned in the direction of the layer normal for a
few layers and then shift in the direction of the tilt. This,
however, would increase the energy associated with the in-
teraction of pancake vortices on the same layer because the
positions of the interstitial vortices relative to those of the
pinned ones, which shift in the direction of the tilt by a
constant amount as one goes from one layer to the next one,
would not be optimal on all the layers. Thus, tilting the co-
lumnar pins away from the direction of the layer normal
should increase the frustration arising from the competition
between the interaction of the vortices with the pinning cen-
ters and the intervortex interactions. This should have a mea-
surable effect on the transition temperatures unless the en-
ergy associated with interlayer interactions among the
pancake vortices is negligibly small compared to the other
energy scales (the intralayer interactions and the pinning en-
ergy) of the problem. Since increased frustration tends to
lower the temperature at which an ordering transition occurs,
the transition temperatures of the vortex system are expected
to decrease as the tilting angle is increased from zero.

To shed some light on this problem, we have studied the
structural and thermodynamic properties of a system of pan-
cake vortices in a strongly anisotropic, layered supercon-
ductor in the presence of tilted columnar pinning, using a
mean-field, free-energy based numerical method developed
in our earlier studies’*!6-1® of vortex matter with different
kinds of pinning. In this method, the free energy of a system
of pancake vortices interacting among themselves and with
pinning centers is written as a functional of the time-
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averaged local areal density of the vortices. Only the electro-
magnetic interaction between pancake vortices on different
layers is considered. Different phases, represented by differ-
ent local minima of the free energy, are obtained by numeri-
cally minimizing the free energy, starting from different ini-
tial configurations of the local density. In this description, a
first-order phase transition between two phases corresponds
to a crossing of the free energies of two distinct minima
representing the two phases. Here, we use parameters appro-
priate for BSCCO and fix the areal density of pancake vor-
tices at a value corresponding to B,=2 kG for the compo-
nent of the magnetic induction normal to the layers. This
corresponds to the experimental situation where the applied
magnetic field H is in the z direction and its magnitude is
such that B, equals 2 kG. We consider different concentra-
tions of columnar pinning centers, keeping their areal density
smaller than that of the pancake vortices, so that the relative
pin concentration ¢=Bcos /B, is much smaller than
unity. The columnar nature of the pins is modeled by repeat-
ing the positions of the pinning centers on successive layers
with a constant shift in the case of tilted pins. We then com-
pare the results obtained for tilted pins with different tilting
angles with those obtained for the same in-plane configura-
tion of pinning centers, but without any tilt (without any shift
for pins oriented in the direction of the layer normal) to
analyze the effects of tilting the columnar pins. The main
results of our study are summarized below.

The structural and thermodynamic properties of the sys-
tems with tilted columnar pins are found to be very similar to
those found in our earlier studies”® of vortex systems in
which both the magnetic field and a small concentration of
random columnar pins are perpendicular to the layers. Spe-
cifically, for small values of the relative pin concentration ¢
defined above, we find, at low temperatures, two distinct
minima of the free energy. At both these minima, nearly all
the pinning centers are occupied by vortices, and both the
pinned and the interstitial vortices form lines that are tilted in
the direction of the columnar pins. The degree of alignment
of the vortices in the direction of the tilt is nearly perfect.
One of these two minima corresponds to the BoG phase in
which the vortices on each layer exhibit substantial short-
range translational and bond-orientational order, but topo-
logical defects such as dislocations are present in small
concentrations. The other minimum is almost perfectly
crystalline over the length scale of our finite samples and
exhibits features characteristic of the topologically ordered
BrG phase of systems with weak point pinning. At tempera-
tures close to the melting temperature of the vortex system
without any pinning, the BoG phase is the thermodynami-
cally stable one with lower free energy. As the temperature is
decreased, the free energy of the more ordered phase crosses
that of the BoG phase at a first order phase transition, so that
the BrG-like phase becomes the thermodynamically stable
one at low temperatures. The minimum representing the BoG
phase evolves continuously to the high-temperature, de-
pinned VL as the temperature is increased—we do not find a
first-order transition to the VL for the pin concentrations con-
sidered in this study. Using a criterion based on percolation
of liquidlike regions,®° we define a crossover temperature for
the transformation of the BoG to the interstitial VL. This
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crossover occurs at a temperature higher than the melting
temperature of the vortex lattice in pristine samples without
any pinning. For larger values of the relative pin concentra-
tion c¢, the low-temperature BrG-like phase is absent and
only the crossover between the BoG and VL phases is found.

Although the general behavior found for tilted columnar
pins is qualitatively similar to that of systems with “vertical”
columnar pins normal to the layers, a detailed comparison
between the results for the same vortex system with tilted
and vertical columnar pins with the same in-plane arrange-
ment of the pinning centers reveals, in contrast with some
previous studies,'*!> a significant differences between the
two cases. First, the temperature of the first-order transition
between the BrG and BoG phases for small values of c¢ is
found to be lower by over 5% (about one degree) in the case
of tilted pins. The temperature of the BoG to VL crossover
for tilted pins is also decreased by a similar amount from that
for vertical columnar pins. Thus, the expected reduction in
the transition temperatures due to increased frustration in the
tilted pin case is observed in our calculation. Second, the
degree of localization of the pancake vortices, measured by
the heights of the local density peaks that represent vortex
positions at the free-energy minima, is always slightly lower
when the pins are tilted. This is true for both the vortices
trapped at the pinning centers and the interstitial ones. This is
a consequence of the additional tilting-induced competition
between the pinning potential and interlayer vortex interac-
tions mentioned above. This competition makes the pinning
centers less effective in trapping vortices and reduces the
extent of in-plane order by decreasing the degree of localiza-
tion of the interstitial vortices.

The rest of the paper is organized as follows. The model
considered and the numerical methods used in our study are
described in Sec. II. The results obtained in this study are
described in detail in Sec. III. We conclude in Sec. IV with a
discussion of our main results in the context of those of
earlier studies.

II. MODEL AND METHODS

The general method we use here is that of minimizing a
mean-field free-energy functional with respect to the time-
averaged local vortex density p,(r), where r is a two-
dimensional vector denoting a location in the layer n. The
free energy includes both intrinsic and pinning terms,

Flp] = Frylp] + F,lp].

For the first term, we take the Ramakrishnan-Yussouff!®
form,

(2.1)

BFrilpl=2 f dr{p,(r)In(p,(r)/po) = 3p,(r)}

—(1/2)22](1{'] dr'C,,(Ir-r'|)

X 6p,,(r)6p,(x"),

where 3 is the inverse temperature and the integrals are two-
dimensional. This free energy is defined with respect to that

(2.2)
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of a vortex liquid with uniform density py=B,/®, where B,
is the component of the magnetic induction in the direction
(z direction) normal to the layers and ®, the superconducting
flux quantum. In the above expression, 8p,(r)=p,(r)—p, is
the deviation of p,(r) from p, and C,,,(r) is the direct pair
correlation function of the layered vortex liquid®® at density
po- This static correlation function depends on the layer sepa-
ration |m—n| and on the distance r in the layer plane, and it
contains all the required information about the interactions in
the system. As in previous work on columnar pins’~® normal
to the layers, we use here the C,,(r) obtained from a
calculation®! via the hypernetted chain approximation®® for
parameter values appropriate for the layered material
BSCCO. Within these premises, two material parameters en-
ter the calculations: the London penetration depth \(7) and
the dimensionless parameter I,

T = BdDY8mN\X(T). (2.3)

where d is the interplanar distance. We will take here values
appropriate to BSCCO; thus d=15 A.

The second term in the right side of Eq. (2.1) is the pin-
ning term and we write it in the form

Flpl=2 f drV,(r)[p,(r) = pol, (2.4)

where the pinning potential V2(r) is computed by summing
over the positions R;, of the jth pinning center in the nth
plane

Vi) =2 Vo(lr =Ry, ). (2.5)
J

The potential V|, corresponding to a single pinning center is
taken to be of the usual truncated parabolic form??

,BVO(")=—CYF[1—("/”0)2](9(”0—"), (2.6)

where r( is the range. In terms of our unit of length a,
defined by wa%p(): 1, we take ry=0.1a,. For the strength «,
which is a dimensionless number, we take the value («
=0.05) at which'® each pinning center pins slightly less than
one vortex in the temperature range studied. This is the same
value used in the previous studies’ of vertical columnar
pins. The number of vortices is determined by B, and we will
consider here a fixed value B,=2 kG. As in the numerical
studies of Refs. 14 and 15, the magnitude and direction of
the applied magnetic field H do not appear explicitly in our
calculation. The situation we consider here may be realized
experimentally by applying a magnetic field in the z direction
and adjusting its magnitude to yield the value of 2 kG for the
z component of the magnetic induction B in the supercon-
ductor. The pinning columns make an angle i with the z
direction. The relative pin concentration ¢ is (equivalently
with the definition given above) the ratio of the number N, of
columnar pins to the number N, of vortices in the system.
To study the phase diagram we discretize the position
variable and numerically minimize the free energy with re-
spect to the discrete set of variables p, ; where the index i
denotes a position in the n layer of the discretized triangular
lattice. We have p, ;= p,(r;))A, where Ay=h?\3/2 is the area
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of the in-plane computational cell of lattice constant 4. The
computational lattice is of size N>XN,. As in previous
work’%10-18\ve take h=a/16 where a=1.99a, is the equilib-
rium value'® of the lattice constant of the system in the ab-
sence of pinning at the chosen value of B,. The minimization
procedure we use” ensures the non-negativity of the vari-
ables p,, ;.

There are some computational issues in solving this prob-
lem which must be explained here. We wish to consider the
case where the pin concentration ¢ is much smaller than
unity. We also want to consider values of the tilt angle ¢ in
the reasonable experimental range. The value of N must be
large enough so that the number of vortices present is not too
small. The value N; of the number of layers in the compu-
tational lattice has to be!” at least several hundred. There are
of course computational limitations: in our recent!® work on
point pinning the total number of computational lattice sites
attainable was N-=N>N,=2%. But the main problem here is
that the periodic boundary conditions in the z direction im-
pose, computationally, an effective “quantization condition”
on the values of ¢ that can be used and, indirectly, on the
range of ¢ that can be studied. This occurs for the following
reason: implementation of periodic boundary conditions is
only possible if, after N; layers, the pinning potential repeats
itself. Assume that the potential due to one of the tilted co-
lumnar pins is such that after an integer number n of layers it
has shifted horizontally by another integer m of in-plane
computational lattice sites. The two integers n and m deter-
mine the tilt angle via tan y=(mh/nd). In order to implement
the periodic boundary conditions in the z direction, the total
horizontal shift (in units of /) after N, layers, which is
(N /n)m, has to equal N so that (N, /n)=(N/m). Thus one
also has tan ¢y=(Nh/N,d). This implies, since h/d=70/15
for the chosen value of B, that one needs a large value of N;
in order to keep ¢ from being too large. But one cannot
increase N; arbitrarily, since the total number of computa-
tional sites N- must remain within feasible bounds. The
value of N; must nevertheless be taken as large as possible,
but, given N and N;, one must still have a number of vor-
tices N,=(N/16)? large enough. One has to note also that the
value of N, puts a lower bound on the values of ¢ that can be
studied, since after all one cannot put less than one pin in the
system. Thus a complicated series of compromises must be
made to optimize the parameter values for which data are
obtained.

With the above in mind, the data presented here have been
obtained with N;=1024. Two values of N have been used:
most of the data have been obtained for N=96 (which means
N=2%932>223%) and additional results will be presented for
N=128 (N-=2%*). In the first case N,=36 and we have taken
N,=4 or ¢=1/9 while in the second case N,=64 and we
have taken N,=8 and the somewhat larger concentration ¢
=1/8. The number of vortices in our samples is larger that
used in other computational work.!> At N=96 therefore, we
have tan ¢=0.437 while at N=128 we have a larger angle,
tan =0.583.

III. RESULTS

We can now discuss the results obtained using the meth-
ods described above. The accuracy of these procedures has
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been repeatedly discussed in previous work’™ and this issue
and other technicalities need not be further elaborated upon
here. The iteration process continues until the system reaches
a local free-energy minimum. The structure of the system at
that minimum is then inferred by analyzing the vortex den-
sity structure, i.e., the set of variables {p, ;}. One needs some
initial condition to start the minimization procedure. If one
starts with perfectly disordered initial conditions, (Jp, ;=0)
and one quenches to a sufficiently high temperature, one ob-
tains a disordered minimum structure. The resulting values
of {p,;} can then be used as the initial condition set at a
nearby 7. Ordered structures can be then obtained upon cool-
ing the system to a lower T sufficiently slowly. Ordered
states can also be obtained by using a crystalline structure
(we take that which minimizes the pinning energy with re-
spect to all the symmetry operations of the lattice) as the
initial configuration. These ordered configurations can then
be warmed up and of course, they eventually become disor-
dered. In general, the ordered configurations are to be iden-
tified, as we will explain below, with BrG states while the
disordered ones are BoG at lower 7, becoming eventually
liquid upon warming. At certain temperatures, more than one
local minimum may be found, and the values of the free
energy then establish which is the stable configuration and
which are only metastable.

A. Structure of minima at ¢c=1/9

We have studied three random pin configurations at c
=1/9, N=96 (as explained above). The behavior for all three
configurations is extremely consistent. For each pin configu-
ration, we have studied also, for comparison purposes, the
behavior of the system with the same pin configuration in the
top layer but with the pinning columns being normal to the
layers, that is, parallel to the z crystal axis, instead of tilted
(¢=0). In so doing, we consider the same pin configuration
at the same value of N to avoid sample to sample variation or
finite size effects tainting the comparison.* The value of N,
is immaterial for vertical columns, since the problem should
be quasi-two-dimensional in this case, but we have explicitly
verified that the results do not change when N, is reduced
from 1024 to eight.

It is important and very useful to visualize the structure of
the free-energy minima from the values of the variables
{p,;}. One way of doing so is by considering the vortex
lattice itself, as opposed to the computational lattice. From
the {p,;} set of values, we can locate the position of a vortex
at site i in the n layer if the value of p,; at that site is larger
that the value of p, ; at any site j within a distance a/2 of site
i. The position of these locations can then be directly plotted.
This allows a clear visualization of the arrangement of the
vortices at different minima of the free energy.

We first address the question of the degree of alignment of
the vortices along the tilted columnar pins. In our samples,
the pin locations shift in the x direction by N=96 spacings of
the computational lattice across N;=1024 layers. Therefore,
there is a shift of three spacings of the computational lattice
after every 32 layers. If the vortices are aligned with the
columnar pins, then their positions would also shift by three
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FIG. 1. (Color online) Vortex lattice structure for the BoG (top
panel) and BrG (bottom panel) phases. The temperature is 17.8 K
where both the phases are locally stable. Each plot shows vortex
positions on 32 different layers, appropriately shifted to compensate
for a tilt along the pinning columns (see text). Dots represent pin
positions, all other symbols are vortex positions. The Voronoi
analysis (see text) of the vortex structure is shown by the symbol
shape (and color). The (black) circles represent ordinary sixfold
coordinated sites, (blue) triangles: fivefold coordinated, (red)
squares: sevenfold coordinated.

spacings of the computational lattice after every 32 layers.
We can check whether this happens by showing in the same
plot the vortex positions on layers n;=k+32] where k is an
arbitrary integer between 1 and 32 and /=0,1,...,31. To
compensate for the expected shift due to the presence of the
tilted columns, we shift the vortex positions on layer n; by 3/
spacings of the computational lattice in the negative x direc-
tion. Then, the plotted vortex positions after the shifts on all
the different layers, /=0,1,...,31, for any k should lie on
top of one another if the vortices are aligned with the tilted
pins. In Fig. 1, we show two such plots for two distinct local
minima of the free energy at 7=17.8 K. As discussed below
(see Fig. 6) in detail, these two minima correspond to the
BoG (top panel) and BrG (bottom panel) states at a tempera-
ture close to the transition temperature at which their free
energies cross. We emphasize that each plot shows the vortex
positions on 32 different layers, corresponding to [
=0,1,...,31, shifted appropriately to compensate for a tilt in
the direction of the columnar pins. The dots in the plot are
the pin positions. All other symbols are vortex lattice sites,
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FIG. 2. (Color online) Distance d(n) between a lattice point and
it nearest neighbor in an adjacent plane (see text) plotted vs layer
separation n for the BrG and BoG phases at 7=17.8 K. The circles
are our results for the BoG minimum, the (blue) solid line repre-
sents the results for the BrG minimum, and the (red) dashed straight
line shows the result expected for d(n)<a, (see text) for perfect
alignment with the tilted columnar pins.

the precise meaning of their shapes and colors is explained
below. The vortex positions on these different layers are
found to fall directly on top of one another after the shifts in
both panels of Fig. 1, so that only one symbol per site can be
seen. This observation indicates that the vortices are almost
perfectly aligned in the tilt direction.

To examine the degree of alignment of the vortices with
the tilted pins for other values (not multiples of 32) of layer
separation, we consider the quantity d(n) which is defined as
the average distance between a vortex site and its nearest
neighbor in an adjacent plane separated by n layers. This is
plotted in Fig. 2 as a function the separation n between
planes for the same BrG and BoG minima and temperature
as in Fig. 1. If the vortex lines are perfectly tilted, then, from
the geometrical considerations in Sec. II and the numerical
values given there, it follows that a plot of d(n) vs n should
be a straight line with slope s=(Nh)/N;,=0.01165q, for
smaller values of n. Departure from a straight line is to be
expected if n exceeds the value for which d(n) reaches a
value close to a, since a is (as previously mentioned) ap-
proximately half of the average spacing a between nearest-
neighboring vortices on a layer. This is because for such
larger values of n, the vortex in layer (n+m) that has the
smallest lateral separation from a vortex on layer m is not the
one located at a position shifted by ns in the direction of the
tilt from the position of the vortex in layer m. Thus, since
d(n) measures the smallest lateral separation between two
vortices located on planes separated by n layer spacings, the
linear increase of d(n) with n should be observed only for
d(n)=<ay or n<ay/s=86. One can see from Fig. 2 that a
straight line with the expected slope fits the results perfectly
well in the relevant n range and this, together with the argu-
ment in the previous paragraph shows that as stated in the
Introduction, the vortex lines are indeed nearly perfectly
tilted along the direction of the pinning columns. This behav-
ior is a consequence of the dominance of the pinning energy
over interlayer vortex interactions for the realistic parameter
values used in our calculation.
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Turning now to the structure in the xy plane, we have
analyzed the structure of the vortex arrangement in each
plane by means of a Voronoi construction. A Voronoi con-
struction in any lattice is performed by dividing it into cells,
one cell per lattice point, each cell consisting of the region of
space which is closest to a certain lattice point than to any
other. For a crystalline lattice, this is the Wigner-Seitz cell. In
general, the number of sides of the Voronoi cell surrounding
a lattice point is the number of neighbors of the lattice point.
The Voronoi analysis then reflects directly the defect struc-
ture. The use of different symbols in Fig. 1 is meant to show
examples of such Voronoi plots for the shifted lattice. We see
that from the point of view of the Voronoi construction there
is a contrast between the two cases shown, at the same T
=17.8 K where two phases are locally stable and have ap-
proximately the same free energy. The state in the top panel
contains a considerable number of defects, as can be seen by
the adjacent site pairs with five or seven neighbors, while the
state in the bottom panel contains none. Hence the first state
can at least tentatively be identified as a BoG state while the
phase in the bottom panel, which in the spatial scale of the
computation looks like a perfect crystal, can be identified as
a BrG with a more ordered structure than the BoG.

One can alternatively describe the structure and verify the
above identifications by studying the density correlation
functions. It is straightforward to extract from the vortex
positions the in-plane angularly averaged two-point correla-
tion function g(r) of the vortex positions, defined as

A EnEHﬁjm(n’i)m(n’j)fii(r7Ar)

8(r) = NN,(N, - 1) 2arAr

(3.1)

where m(n,i)=1 if the computational lattice site i on layer n
corresponds to a vortex position (i.e., if the local density
peaks at this computational lattice site), and m(n,i)=0 oth-
erwise, A is the area of the sample in the xy-plane, and
fij(r,Ar)=1 if the distance between the lattice sites (,7) and
(n,j) lies between r and r+Ar (we use Ar=0.2q, in our
calculation), and f;;(r,Ar)=0 otherwise. The normalization
of g(r) is such that it should approach unity in the large-r
limit if there is no long-range translation order in the planes.
For a perfect triangular lattice, the first five peaks of g(r)
should occur at r=1.99q,, 3.44a,, 3.98a,y, 5.26a,, and
5.97a,. This g(r) is different from the more familiar pair
distribution function that measures the two-point correlation
of the local density. In particular, information about the de-
gree of localization of the local density peaks corresponding
to the vortex positions is not contained in g(r) because only
the positions of these peaks are used in its calculation. Ex-
amples of g(r) are plotted in Fig. 3 for the same two cases as
in Fig. 1. Again, we see the contrast between the two cases.
Although the relatively small size of the system precludes
studying the very long r behavior, one can see that the cor-
relation function for the state which in Fig. 1 exhibited no
defects has a more ordered structure (higher and better de-
fined peaks at the values of r for which sharp peaks are
expected for a triangular lattice) than the one we tentatively
identified as a BoG state based on the Voronoi constructions
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FIG. 3. (Color online) Angularly averaged in-plane correlation
function g(r). Results for the same states and T as in Fig. 1 are
shown. The (black) line and circles are for the more ordered (BrG)
state and the (blue) line and triangles are for the BoG.

of Fig. 1. Thus, this analysis if g(r) confirms the identifica-
tions made based on direct visualization and the Voronoi
construction.

Next, in Fig. 4 we consider a measure of the order as a
function of temperature. There are a number of ways in
which one can define an “order parameter” and here we
choose the value of g(r) at its first 7>0 peak. This quantity,
which we call g,..., is plotted as a function of 7 for the same
configuration presented in the previous figures. We do this
for both the BrG phase and the BoG one. As we shall see
below in the discussion associated with Fig. 6, the BrG does
not exist, even as a metastable, state for 7> 18.0 K and the
same holds for the BoG at 7<17.0 K, hence the ranges
plotted. We see that this quantity decreases with T in either
case but that it is considerably larger in the BrG than in the
BoG, as one would expect. At T=17.5 K where, as we shall
see below, the free energies of the two states cross, there is a
marked discontinuity in the equilibrium value of g,,... The
nearly constant value of g, for the BoG phase at tempera-
tures higher than 17.8 K is a reflection of the above men-
tioned fact that the g(r) considered here does not take into
account the broadening of the local density peaks with in-
creasing temperature.

We end this section with a comparison of the structures of
the BoG and BrG minima obtained for the same in-plane pin

5.5

gmax

4.5¢

4 ‘ ‘ ‘ ‘ ‘
16 165 17 175 18 185 19
T(K)

FIG. 4. The quantity g, (see text) used as a measure of the
order parameter, plotted as a function of 7 for both the BoG and the
BrG phases. Triangles: ordered (BrG) state, Circles: BoG.
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FIG. 5. (Color online) Comparisons of the in-plane structures of
BoG and BrG minima obtained (see text) for tilted and vertical pins
at the same temperature and same in-plane pin configuration. Top
panel: BoG phase at T=18.4 K, (red) circles: vertical pins, (blue)
triangles: tilted pins. Bottom panel: same for the BrG phase at T
=17.8 K.

configuration, but for tilted pins in one case and vertical pins
in the other case. In Fig. 5, we show vortex position plots
similar to those in Fig. 1 except that no Voronoi analysis is
performed. The top panel shows the data for the BoG phase
at T=18.4 K and the bottom panel shows the results for the
BrG phase at 7=17.8 K. It is clear from these plots that the
in-plane structure for tilted and vertical pins are very similar
in both the BrG and BoG phases. The degree of alignment
with the pins is also found to be very similar for tilted and
vertical pins. There are differences, however, between the
vertical and tilted cases, as we will see below.

B. Free energy and phase transitions

The minimization procedure yields, of course, the value
of the free energy at each local minimum. By considering the
free-energy values as a function of 7 the possible phase tran-
sitions in the system can be studied. In Fig. 6 we show typi-
cal results at c=1/9. The main plot is for the tilted case with
N=96 in which case, as explained above, y=0.41. The free
energy per vortex is plotted as a function of temperature. At
high temperatures only one state is stable. The corresponding
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FIG. 6. (Color online) Free energy vs temperature. The data
points are the results, the lines join the data points. The (green) X
symbols are for the BrG state and the (red) pluses for the BoG. The
main plot shows the free energy per vortex for a tilted configuration
at c=1/9 (see text). The inset shows the same data, in a restricted
region, for the same configuration but vertical pinning lines.

free energy is plotted as the (red) crosses. By analyzing the
results at each T as explained in the previous subsection, we
find that this state is disordered, a BoG. It exists down to
T=17.0 K, where, as one can see in the figure, it becomes
unstable to the other state. This other state, the free energy of
which is denoted by the (green) X signs connected by dotted
lines, is found in the same way to be the BrG state. At tem-
peratures in the range 17 K=7=18.0 K both states can be
found, one being of course only metastable. The crossing of
the free energies occurs at 7=~17.6 K where therefore a
first-order transition occurs, as seen by the difference in
slopes of the free energy and the discontinuity of the order
parameter in Fig. 4.

The inset shows, in a reduced temperature range, similar
results for the same pin configuration but at =0 (vertical
pins). We see that in that case the first-order transition occurs
near T=18.6 K, about one degree higher than in the tilted
case. This one degree shift occurs for all pin configurations
investigated at this value of c: although the values of the
individual transition temperatures show some sample-to-
sample variation, the one degree shift always occurs. We see
then that for c=1/9 increasing the angle ¢ leads to a notable
decrease of the temperature at which the BrG transforms to
the BoG.

At higher temperatures the BoG crosses over to an inter-
stitial liquid phase. As we have seen in the vertical pin
case’ this transition coincides with the onset of percolation
of the liquid phase. The determination of this transition is
shown in Fig. 7. The quantity plotted there is the fraction f of
the liquidlike local density peaks as a function of tempera-
ture. A vortex lattice site is assumed to be liquidlike if® the
local value of p,; does not exceed 3p, (excluding of course
the pinning sites). This fraction of liquidlike sites is small at
lower T and it rises rapidly up to temperatures higher than
the first-order transition. Then it flattens somewhat and it
crosses the value of 1/2 (the threshold value for site perco-
lation on a triangular lattice) at a higher temperature T
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FIG. 7. (Color online) Fraction f of liquidlike sites for BoG
minima, plotted as a function of 7. The triangles are for the tilted
pin system, the circles for the same configuration but with vertical
pins.

~18.4 K. We take this to be the temperature of crossing
over from the BoG to the IL region. In Fig. 7 results are also
plotted for the vertical pins case. The percolation crossover is
found to occur at a slightly higher temperature, 7=~19.0 K,
for vertical pins.

There are some additional noteworthy differences be-
tween the tilted pin results and the results for vertical pins.
We have already seen that the transition temperatures from
BrG to BoG (Fig. 6) and from Bog to IL (Fig. 7) are higher
for vertical pins. In the Fig. 6 plots one can also observe that
the difference in the slopes at the crossing, which is a mea-
sure of the latent heat per vortex, is smaller in the vertical pin
case, as compared to the tilted situation. An additional dif-
ference is plotted in Fig. 8. There we plot, in a semilog scale,
the local density peak height as a function of coordinate in
the x direction, for both the tilted case (plotted with lines
ending with dots) and the vertical one (triangles). This is
done in one panel at 7=18.4 K in the BoG phase and at T
=17.8 K (BrG) in the other panel. It is striking that in both
cases the peak heights for vertical pins are always higher.

The free energy per vortex is somewhat lower (at the
same T) in the vertical case at lower values of T but the
difference becomes negligible at sufficiently high tempera-
tures where the stable state is the BoG in both cases. This
occurs, we think, for the following reason: in Fig. 8 and
similar data, the integrated vortex densities with values close
to unity correspond to pin locations, indicating that the pins
are almost fully occupied by vortices. Therefore the portion
of the free energy arising from interplane electromagnetic
interactions will tend to be higher in the tilted case. How-
ever, Fig. 8 also shows that the smaller peak densities away
from the pinning columns are also higher for vertical pinning
columns. This means that the density distribution in the ver-
tical case is more localized, which is consistent with the
higher transition temperature. At or above the melting tem-
perature of the pure vortex system without pins, a more lo-
calized density distribution will tend to have larger contribu-
tions to the free energy arising from entropy and in-plane
interactions. At temperatures above 18.4 K the free-energy
gain arising from the lower localization in the tilted case
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FIG. 8. (Color online) Peak height vs position for c=1/9, com-
paring vertical and tilted (tan y=0.437) cases. Results at =0 are
shown as the (red) triangles and those of the tilted case by the (blue)
dots and impulses. The top panel is for 7=18.4 K and BoG states
while the bottom one is at T=17.8 K (BrG).

basically cancels the free energy cost from the interplane
vortex interaction.

C. Results at c=1/8

We have also studied a somewhat higher concentration,
c=1/8 at N=128. This corresponds to a somewhat larger tilt
angle, tan y/=0.583. Results for the obtained equilibrium
structure are given in Fig. 9. The top panel of this figure
shows the vortex lattice structure along with the results of a
Voronoi analysis (completely analogous to Fig. 1). Despite
the very low value of the temperature (7=16.8 K) we find
that a good number of defects remain and that the structure is
the same as the BoG one in the top panel of Fig. 1. This is
confirmed in the bottom panel of Fig. 9 where we plot, at the
same 7, the correlation function g(r) as in Fig. 3. We see
(compare with Fig. 3) that the correlation function structure
is of the BoG type. This remains the situation down to the
lowest temperatures reached (7=15.2 K). The free energy
per vortex is not too different from that in the c=1/9 case
(Fig. 5) but no instability to a more ordered state is found,
down to the lowest T attained. It is possible to obtain BrG-
like structures by quenching to low temperatures with initial
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FIG. 9. (Color online) Analysis of the structure of a BoG mini-
mum for a tilted pin configuration at N=128, c=1/8, T=16.8 K. In
the top panel we have shown the results of a Voronoi analysis. The
symbols mean the same as in Fig. 1. In the bottom panel we have
g(r) plotted in the same way as in Fig. 3.

conditions corresponding to a crystal: we have done so by
quenching to 7=16.0 K but the resulting free-energy values
are considerably higher than those for the BoG at the same 7.
Thus in this case only the BoG is found as an equilibrium
state.

We conclude that at these values of ¢ and ¢ no transition
to a BrG occurs except possibly at much lower temperatures.
We have also studied the same pin configuration, at this
value of N, for vertical pins. We have again found no BoG to
BrG transition upon cooling. We conclude then that the
change in ¢, not the different value of ¢, is responsible for
the different behavior found in the two cases studied here.
The high sensitivity of the possible BoG to BrG transition to
¢ should not come as a surprise. In previous work (see in
particular Fig. 1 of Ref. 9) for vertical columns and a much
larger value of N, where because the problem is quasi-two-
dimensional we were able to map the phase diagram in the
(T,c) plane at constant field, we found that the line in the
(T,c) plane separating the BrG from the BoG, while nearly
vertical at small ¢, eventually curves sharply and then be-
comes nearly horizontal, reflecting a very strong dependence
of the transition temperature on ¢ and leading in fact to the
disappearance of this first-order transition at somewhat larger
c. This is quite consistent with what we find here. There are
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however small quantitative differences with the results of
Ref. 9. Here, we find that the BrG phase is still present at low
temperatures for c=1/9, whereas Ref. 9 reported this phase
absent for ¢>1/32. The transition and crossover tempera-
tures found here are also slightly different from the values
reported in our earlier work. We believe that this is due to the
large difference between the sizes of the systems considered.
Since the system with vertical columnar pins is effectively
two-dimensional, it was possible to study much larger sys-
tems (with N,=4096, about 100 times larger than those con-
sidered here) in our earlier studies. The smallness of the
system size in the present study makes the results quantita-
tively less reliable: this is clear from the observed sample-
to-sample variations of the transition and crossover tempera-
tures. Our earlier results obtained for much larger samples,
would be more reliable for vertical pins. The purpose of
considering vertical pins in the present work was to make a
direct comparison with the behavior for tilted columnar pins
without having to worry about sample to sample variations
or finite size effects.

IV. SUMMARY AND DISCUSSIONS

Our detailed comparison of the results for the thermody-
namic behavior of the vortex system in the presence of a
dilute array of tilted columnar pinning centers reveals sig-
nificant quantitative differences between this system and a
similar system with vertical pinning columns, normal to the
layers, in the same in-plane configuration. The thermody-
namic behavior of the tilted pins system is however qualita-
tively similar to that found in our earlier studies’” of the
vortex system with columnar pins perpendicular to the lay-
ers. In both cases, all the pins are occupied by vortices if the
relative concentration c of the pinning centers is small. In the
tilted case, we find that the interstitial vortices are well
aligned in the tilt direction. If the relative pin concentration
is low (¢=1/9), the low-temperature phase exhibits the char-
acteristics of a Bragg glass. As the temperature is increased,
this phase transforms, via a first-order transition, to a more
disordered BoG phase which crosses over to an interstitial
liquid at a slightly higher temperature. For a higher pin con-
centration (c=1/8), the Bragg glass phase is absent and the
system exhibits only the crossover from the low-temperature
BoG to the interstitial liquid phase as the temperature is in-
creased. This is qualitatively similar to what occurs in the
vertical pins case.

Quantitatively, the temperatures at which the transition
from the BrG phase to the BoG phase and the crossover from
the BoG to the interstitial liquid occur are found to be appre-
ciably higher (by about one degree, or over 5%) in the ver-
tical pin case. The degree of localization of the vortices in
the low temperature, solidlike phases is also significantly
higher for vertical pins. We attribute these differences to the
“frustration” in the tilted case, arising from a competition
between the interlayer vortex interaction, which is mini-
mized when the pancake vortices on different layers are
stacked in the vertical direction, and the pinning energy
which is minimized when the vortices are aligned in the
direction of the tilt. This competition also makes the free
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energy in the tilted case slightly higher than that for vertical
pins at low temperatures, as we have seen. These physical
effects of tilting the columnar pins away from the layer nor-
mal should be observable in experiments.

The differences we find between the results for vertical
and tilted pins seem to contradict some experimental'# stud-
ies which concluded that the thermodynamic behavior of the
vortex system is independent of the angle between the mag-
netic field and the tilt direction if the areal densities of pan-
cake vortices and pinning centers on each layer are held
fixed. It is important to understand the reasons for this ap-
parent disagreement. In the experiment of Ref. 14, the effects
of changing the angle between the magnetic field and the
direction of columnar pins were explored by changing the
field direction for a sample with columnar pins tilted by 45°
from the layer normal. This is not the same as the situation
considered in our study. In an isotropic superconductor, the
individual directions of the field and the columnar pins are
not important: the behavior of the vortex system is deter-
mined by the angle between the two directions. But for
highly anisotropic layered materials such as high-7, super-
conductors, the directions of both the field and the columnar
pins are important. The experiment of Ref. 14 did not present
any comparison between the results obtained for the two
cases considered in our study: one in which the pins are tilted
away from the layer normal, and the other in which the pins
are perpendicular to the layers, but the areal densities of the
pins and pancake vortices on each layer are the same as those
in the first case. Since the measurements for different orien-
tations of the field were carried out for the same sample with
the columnar pins tilted away from the direction of the layer
normal, the frustration effects mentioned above, arising from
the competition between interlayer interactions and pinning,
were present in all the measurements. In contrast, these frus-
tration effects are not present in one of the cases (vertical
pins) considered in our study. Thus there is no real contra-
diction. In view of our results, an experiment that makes a
comparison between the thermodynamic behavior in the two
cases considered in our study would be very interesting.

It is more difficult to understand the reason for the differ-
ence between our results and those of Langevin
simulations'*!> performed on systems very similar to those
considered in our study. The simulations described in these
papers were carried out for both vertical and tilted columnar
pins, keeping the areal densities of pinning centers and pan-
cake vortices fixed. Both electromagnetic and Josephson in-
teractions between pancake vortices on different layers were
included. Since both these interactions prefer vortices on dif-
ferent layers to stack up in the direction of the layer normal,
the frustration arising from the competition between these
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interactions and the pinning potential for tilted columnar pins
is expected to be stronger in these simulations in comparison
to that in our study which considers only the electromagnetic
interaction. However, these simulations did not find any sig-
nificant difference between the results for vertical and tilted
pins. This disagreement with the results of our study may be
a consequence of differences in system parameters. The val-
ues of ¢ used in the simulations (¢=0.35 and 0.5) are sub-
stantially higher that those (1/9 and 1/8) considered here. A
large concentration of pinning centers has the effect of re-
ducing the relative importance of the interlayer interactions
by making the pinning energy the dominant term in the total
energy of the vortex system. In fact, it is argued in Refs. 14
and 15 that the cost in Josephson and electromagnetic ener-
gies due to the tilting of the vortices is negligibly small com-
pared to the gain in pinning energy for the parameters used
in the simulations. If this is so, then it is not surprising that
the simulations did not find any difference between the ther-
modynamic behavior for tilted and vertical pins. It is also
possible that the simulations are not sufficiently accurate to
capture the fairly small differences between the results for
the two cases found in our study. The relatively small size of
the simulated systems (N,=36, and a number of layers N,
=200, which is substantially smaller than that considered in
our study) implies that there would be large fluctuations in
the quantities measured in the simulations. This would lead
to substantial uncertainties in the determination of transition
temperatures—it is well known that it is very difficult to
determine transition temperatures accurately from simula-
tions of small systems. The authors mention in Ref. 15 that
their simulation is not accurate enough to determine transi-
tion temperatures with an accuracy of 1 K. Since the differ-
ences between the transition and crossover temperatures for
tilted and vertical pins found in our study are of the order of
1 K, these differences would not be detected in the simula-
tion. Some of the detailed comparisons between the results
for the two cases, shown in Fig. 8 of Ref. 15, are actually in
agreement with our observations. For example, it is shown in
panel (c) of Fig. 8 of Ref. 15 that the mean-square displace-
ment of the vortices from their equilibrium positions is
slightly higher in the tilted case. This is very similar to the
results shown in Fig. 8 above. We expect that the other dif-
ferences between the results for vertical and tilted columnar
pins found in our study will also be observed in simulations
if the measurements are done with sufficient accuracy at the
same values of ¢ and other relevant parameters.
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